-
sushie.infer.infer_sushie(Xs: List[Array | ndarray | bool | number | bool | int | float | complex], ys: List[Array | ndarray | bool | number | bool | int | float | complex], covar: List[Array | ndarray | bool | number | bool | int | float | complex] | None =
None, L: int =10, no_scale: bool =False, no_regress: bool =False, no_update: bool =False, pi: Array | ndarray | bool | number | bool | int | float | complex | None =None, resid_var: List[float] | None =None, effect_var: List[float] | None =None, rho: List[float] | None =None, max_iter: int =500, min_tol: float =0.0001, threshold: float =0.95, purity: float =0.5, purity_method: str ='weighted', max_select: int =500, min_snps: int =100, no_reorder: bool =False, seed: int =12345) SushieResult[source] The main inference function for running SuShiE.
- Parameters:
- Xs: List[Array | ndarray | bool | number | bool | int | float | complex]¶
Genotype data for multiple ancestries.
- ys: List[Array | ndarray | bool | number | bool | int | float | complex]¶
Phenotype data for multiple ancestries.
- covar: List[Array | ndarray | bool | number | bool | int | float | complex] | None =
None¶ Covariate data for multiple ancestries.
- L: int =
10¶ Inferred number of eQTLs for the gene.
- no_scale: bool =
False¶ Do not scale the genotype and phenotype. Default is to scale.
- no_regress: bool =
False¶ Do not regress covariates on genotypes. Default is to regress.
- no_update: bool =
False¶ Do not update the effect size prior. Default is to update.
- pi: Array | ndarray | bool | number | bool | int | float | complex | None =
None¶ The probability prior for one SNP to be causal (\(\pi\) in Model Description). Default is \(1\) over the number of SNPs by specifying it as
None.- resid_var: List[float] | None =
None¶ Prior residual variance (\(\sigma^2_e\) in Model Description). Default is \(0.001\) by specifying it as
None.- effect_var: List[float] | None =
None¶ Prior causal effect size variance (\(\sigma^2_{i,b}\) in Model Description). Default is \(0.001\) by specifying it as
None.- rho: List[float] | None =
None¶ Prior effect size correlation (\(\rho\) in Model Description). Default is \(0.1\) by specifying it as
None.- max_iter: int =
500¶ The maximum iteration for optimization. Default is \(500\).
- min_tol: float =
0.0001¶ The convergence tolerance. Default is \(10^{-4}\).
- threshold: float =
0.95¶ The credible set threshold. Default is \(0.95\).
- purity: float =
0.5¶ The minimum pairwise correlation across SNPs to be eligible as output credible set. Default is \(0.5\).
- purity_method: str =
'weighted'¶ The method to compute purity across ancestries. Default is
weighted.- max_select: int =
500¶ The maximum number of selected SNPs to compute purity. Default is \(500\).
- min_snps: int =
100¶ The minimum number of SNPs to fine-map. Default is \(100\).
- no_reorder: bool =
False¶ Do not re-order single effects based on Frobenius norm of alpha-weighted posterior mean square. Default is to re-order.
- seed: int =
12345¶ The randomization seed for selecting SNPs in the credible set to compute purity. Default is \(12345\).
- Returns:
A SuShiE result object that contains prior (
Prior), posterior (Posterior),cs,pip,elbo, andelbo_increase.- Return type:
Last update:
Oct 27, 2024