-
sushie.infer.infer_sushie(Xs: List[Array | ndarray | bool | number | bool | int | float | complex], ys: List[Array | ndarray | bool | number | bool | int | float | complex], covar: List[Array | ndarray | bool | number | bool | int | float | complex] | None =
None
, L: int =10
, no_scale: bool =False
, no_regress: bool =False
, no_update: bool =False
, pi: Array | ndarray | bool | number | bool | int | float | complex | None =None
, resid_var: List[float] | None =None
, effect_var: List[float] | None =None
, rho: List[float] | None =None
, max_iter: int =500
, min_tol: float =0.0001
, threshold: float =0.95
, purity: float =0.5
, purity_method: str ='weighted'
, max_select: int =500
, min_snps: int =100
, no_reorder: bool =False
, seed: int =12345
) SushieResult [source] The main inference function for running SuShiE.
- Parameters:
- Xs: List[Array | ndarray | bool | number | bool | int | float | complex]¶
Genotype data for multiple ancestries.
- ys: List[Array | ndarray | bool | number | bool | int | float | complex]¶
Phenotype data for multiple ancestries.
- covar: List[Array | ndarray | bool | number | bool | int | float | complex] | None =
None
¶ Covariate data for multiple ancestries.
- L: int =
10
¶ Inferred number of eQTLs for the gene.
- no_scale: bool =
False
¶ Do not scale the genotype and phenotype. Default is to scale.
- no_regress: bool =
False
¶ Do not regress covariates on genotypes. Default is to regress.
- no_update: bool =
False
¶ Do not update the effect size prior. Default is to update.
- pi: Array | ndarray | bool | number | bool | int | float | complex | None =
None
¶ The probability prior for one SNP to be causal (\(\pi\) in Model Description). Default is \(1\) over the number of SNPs by specifying it as
None
.- resid_var: List[float] | None =
None
¶ Prior residual variance (\(\sigma^2_e\) in Model Description). Default is \(0.001\) by specifying it as
None
.- effect_var: List[float] | None =
None
¶ Prior causal effect size variance (\(\sigma^2_{i,b}\) in Model Description). Default is \(0.001\) by specifying it as
None
.- rho: List[float] | None =
None
¶ Prior effect size correlation (\(\rho\) in Model Description). Default is \(0.1\) by specifying it as
None
.- max_iter: int =
500
¶ The maximum iteration for optimization. Default is \(500\).
- min_tol: float =
0.0001
¶ The convergence tolerance. Default is \(10^{-4}\).
- threshold: float =
0.95
¶ The credible set threshold. Default is \(0.95\).
- purity: float =
0.5
¶ The minimum pairwise correlation across SNPs to be eligible as output credible set. Default is \(0.5\).
- purity_method: str =
'weighted'
¶ The method to compute purity across ancestries. Default is
weighted
.- max_select: int =
500
¶ The maximum number of selected SNPs to compute purity. Default is \(500\).
- min_snps: int =
100
¶ The minimum number of SNPs to fine-map. Default is \(100\).
- no_reorder: bool =
False
¶ Do not re-order single effects based on Frobenius norm of alpha-weighted posterior mean square. Default is to re-order.
- seed: int =
12345
¶ The randomization seed for selecting SNPs in the credible set to compute purity. Default is \(12345\).
- Returns:
A SuShiE result object that contains prior (
Prior
), posterior (Posterior
),cs
,pip
,elbo
, andelbo_increase
.- Return type:
Last update:
Oct 27, 2024