- class sushie.infer.Posterior[source]
Define the class for the posterior parameter of SuShiE model.
- Variables:
- alpha : jax.Array
Posterior probability for SNP to be causal (i.e., \(\alpha\) in Model Description; \(L \times p\)).
- post_mean : jax.Array
The alpha-weighted posterior mean for each SNP (\(L \times p \times k\)).
- post_mean_sq : jax.Array
The alpha-weighted posterior mean square for each SNP (\(L \times p \times k \times k\) , a diagonal matrix for \(k \times k\)).
- weighted_sum_covar : jax.Array
The alpha-weighted sum of posterior effect covariance across SNPs (\(L \times k \times k\)).
- kl : jax.Array
The Kullback–Leibler (KL) divergence for each \(L\).
Infer Public-members¶
- static Posterior(_cls, alpha: Array, post_mean: Array, ...)
Create new instance of Posterior(alpha, post_mean, post_mean_sq, weighted_sum_covar, kl)
- __repr__()
Return a nicely formatted representation string
- __getnewargs__()
Return self as a plain tuple. Used by copy and pickle.
Last update:
Oct 27, 2024