- class sushie.infer.SushieResult[source]
- Define the class for the SuShiE inference results. - Variables:
- priors : sushie.infer.Prior
- The final prior parameter for the inference. 
- posteriors : sushie.infer.Posterior
- The final posterior parameter for the inference. 
- pip_all : jax.Array
- The PIP for each SNP across \(L\) credible sets. 
- pip_cs : jax.Array
- The PIP across credible sets that are not pruned. 
- cs : pandas.core.frame.DataFrame
- The credible sets output after filtering on purity. 
- alphas : pandas.core.frame.DataFrame
- The full credible sets before filtering on purity. 
- sample_size : jax.Array
- The sample size for each ancestry in the inference. 
- elbo : jax.Array
- The final ELBO. 
- elbo_increase : bool
- A boolean to indicate whether ELBO increases during the optimizations. 
- l_order : jax.Array
- The original order that SuShiE infers. For example, if L=3 and it is 0,2,1, then the original SuShiE’s second effect (0-based index 1) is now third, and the original SuShiE’s third effect (0-based index 2) is now second after sorting use Frobenius norm. 
 
 - Infer Public-members¶- static SushieResult(_cls, priors: Prior, posteriors: Posterior, ...)
- Create new instance of SushieResult(priors, posteriors, pip_all, pip_cs, cs, alphas, sample_size, elbo, elbo_increase, l_order) 
 - __repr__()
- Return a nicely formatted representation string 
 - __getnewargs__()
- Return self as a plain tuple. Used by copy and pickle. 
 
  
    
      Last update:
      Oct 27, 2024