- class sushie.infer.SushieResult[source]
Define the class for the SuShiE inference results.
- Variables:
- priors : sushie.infer.Prior
The final prior parameter for the inference.
- posteriors : sushie.infer.Posterior
The final posterior parameter for the inference.
- pip_all : jax.Array
The PIP for each SNP across \(L\) credible sets.
- pip_cs : jax.Array
The PIP across credible sets that are not pruned.
- cs : pandas.core.frame.DataFrame
The credible sets output after filtering on purity.
- alphas : pandas.core.frame.DataFrame
The full credible sets before filtering on purity.
- sample_size : jax.Array
The sample size for each ancestry in the inference.
- elbo : jax.Array
The final ELBO.
- elbo_increase : bool
A boolean to indicate whether ELBO increases during the optimizations.
- l_order : jax.Array
The original order that SuShiE infers. For example, if L=3 and it is 0,2,1, then the original SuShiE’s second effect (0-based index 1) is now third, and the original SuShiE’s third effect (0-based index 2) is now second after sorting use Frobenius norm.
Infer Public-members¶
- static SushieResult(_cls, priors: Prior, posteriors: Posterior, ...)
Create new instance of SushieResult(priors, posteriors, pip_all, pip_cs, cs, alphas, sample_size, elbo, elbo_increase, l_order)
- __repr__()
Return a nicely formatted representation string
- __getnewargs__()
Return self as a plain tuple. Used by copy and pickle.
Last update:
Oct 27, 2024