-
susiepca.infer.susie_pca(X: Array | ndarray | bool_ | number | bool | int | float | complex | JAXSparse, z_dim: int, l_dim: int, A: Array | ndarray | bool_ | number | bool | int | float | complex | None =
None
, tau: float =1.0
, standardize: bool =False
, init: 'pca' | 'random' ='pca'
, seed: int =0
, max_iter: int =200
, tol: float =0.001
, verbose: bool =True
) SuSiEPCAResults [source] The main inference function for SuSiE PCA.
- Parameters:
- X: Array | ndarray | bool_ | number | bool | int | float | complex | JAXSparse¶
Input data. Should be an array-like
- z_dim: int¶
Latent factor dimension (int; K)
- l_dim: int¶
Number of single-effects comprising each factor (int; L)
- A: Array | ndarray | bool_ | number | bool | int | float | complex | None =
None
¶ Annotation matrix to use in parameterized-prior mode. If not
None
, leading dimension should match the feature dimension of X.- tau: float =
1.0
¶ initial value of residual precision (default = 1)
- standardize: bool =
False
¶ Whether to center and scale the input data with mean 0 and variance 1 (default = False)
- init: 'pca' | 'random' =
'pca'
¶ How to initialize the variational mean parameters for latent factors. Either “pca” or “random” (default = “pca”)
- seed: int =
0
¶ Seed for “random” initialization (int)
- max_iter: int =
200
¶ Maximum number of iterations for inference (int)
- tol: float =
0.001
¶ Numerical tolerance for ELBO convergence (float)
- verbose: bool =
True
¶ Flag to indicate displaying log information (ELBO value) in each iteration
- Returns:
tuple that has member variables for learned parameters (
ModelParams
), evidence lower bound (ELBO) results (ELBOResults
) from the last iteration, the percent of variance explained (PVE) for each of theK
factors (jax.numpy.ndarray
), the posterior inclusion probabilities (PIPs) for each of theK
factors andP
features (jax.numpy.ndarray
).- Return type:
SuSiEPCAResults
- Raises:
ValueError – Invalid
l_dim
orz_dim
values. Invalid initialization scheme.Data X contains inf or nan. If annotation matrix A is not None, raises –
if A contains inf, nan or does not match feature dimension with X. –
Last update:
Feb 13, 2024